IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 6, NOVEMBER 2009 647

Integrate the GM(1,1) and Verhulst Models to Predict
Software Stage Effort

Yong Wang, Qinbao Song, Stephen MacDonell, Martin Shepperd, and Junyi Shen

Abstract—Background: Software effort prediction clearly plays
a crucial role in software project management. Problem: In keep-
ing with more dynamic approaches to software development, it is
not sufficient to only predict the whole-project effort at an early
stage. Rather, the project manager must also dynamically predict
the effort of different stages or activities during the software devel-
opment process. This can assist the project manager to reestimate
effort and adjust the project plan, thus avoiding effort or sched-
ule overruns. Method: This paper presents a method for software
physical time stage-effort prediction based on grey models GM(1,1)
and Verhulst. This method establishes models dynamically accord-
ing to particular types of stage-effort sequences, and can adapt
to particular development methodologies automatically by using a
novel grey feedback mechanism. Result: We evaluate the proposed
method with a large-scale real-world software engineering dataset,
and compare it with the linear regression method and the Kalman
filter method, revealing that accuracy has been improved by at
least 28 % and 50 %, respectively. Conclusion: The results indicate
that the method can be effective and has considerable potential.
We believe that stage predictions could be a useful complement to
whole-project effort prediction methods.

Index Terms—Grey prediction, software project management,
software project stage-effort prediction.

1. INTRODUCTION

CCURATE and unbiased software effort prediction is
A an important contributor to effective software project
management [1]-[7]. Whole-project effort prediction is clearly
important in terms of enabling software developers/managers
to make a reasonable bid or form a plan of activities—
consequently, an extensive body of research has addressed this
facet of project management (see, for example, [1], [4], [5],
and [8]-[11]). On the other hand, the capability to predict the

Manuscript received June 30, 2008; revised December 19, 2008. First
published August 4, 2009; current version published October 16, 2009. This
work was supported in part by the National Natural Science Foundation of
China under Grants 60673124 and 90718024, and in part by the Hi-Tech Re-
search and Development Program of China under Grant 2006AA01Z183. This
paper was recommended by Associate Editor A. M. Tjoa.

Y. Wang and J. Shen are with the Department of Computer Science
and Technology, Xi’an Jiaotong University, Xi’an 710049, China (e-mail:
Markwy @ 126.com; jyshen @mail.xjtu.edu.cn).

Q. Song is with the Department of Computer Science and Technology, Xi’an
Jiaotong University, Xi’an 710049, China, and also with the State Key Labora-
tory of Software Engineering, Wuhan University, Wuhan 430072, China (e-mail:
gbsong @mail.xjtu.edu.cn).

S. MacDonell is with the School of Computing and Mathematical Sciences,
Auckland University of Technology, Auckland 1142, New Zealand (e-mail:
stephen.macdonell @aut.ac.nz).

M. Shepperd is with the School of IS, Computing and Maths, Brunel Univer-
sity, UB8 London, U.K. (e-mail: martin.shepperd @brunel.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCC.2009.2020690

effort required in different stages during the software develop-
ment process is also important but rather less studied [3], [10],
[12]-[16]. Such a capability enables (or at least should enable)
project managers to identify potential effort overrun risk dur-
ing the project and reallocate resources when necessary. It has
been estimated that around 75% of all projects overrun their
schedules due to inaccurate effort prediction [5]. The develop-
ment and use of software stage-effort prediction methods have
the potential to ensure that predictions are revisited and revised
on an ongoing basis, and the result being that the accuracy of
predictions should improve.

This is not to say, however, that the accurate prediction of soft-
ware stage effort is straightforward. The software development
process can proceed in a sporadic manner despite the best-laid
plans. It is influenced by many uncertain and challenging-to-
measure factors, such as individuals’ levels of expertise, project
difficulty, and technical complexity [3], [14], [17], [18]. More-
over, software development is largely a continuous and cumula-
tive process. The work of prior stages forms the basis of current
and subsequent stages, and there is evidence to suggest that there
are some inherent relationships between the effort of prior and
subsequent stages [3], [10], [12], [13]—although the nature of
those relationships is not yet clear. This lends motivation to the
idea of using prior stage effort to predict subsequent stage effort,
a prediction process that should be continuous and dynamic in
line with contemporary approaches to software development.

The stage-effort prediction problem has been addressed us-
ing a variety of data analysis methods (see Section II)—among
them, linear regression (LR) analysis has been popular. In
some cases, however, the relationships between different pro-
cess stages was found to be not particularly strong, leading to
some instances of large prediction error. In particular, predic-
tions made in the early stages of a project tend to be more
challenging—Ilater-stage predictions can leverage the greater
certainty that accrues with progress. Early-stage prediction must
be performed in the context of data starvation, a context that is
not conducive to commonly employed statistical methods (such
as regression and those based on time series) and machine learn-
ing methods that usually require large data samples to determine
statistical features of the series to build prediction models.

Grey system theory (GST), a system engineering theory based
on the uncertainty of small samples, was first proposed by Deng
in 1982 [19]. In keeping with the notion of a black box rep-
resenting a system whose internal workings are not visible, a
system about which we only know some information (mecha-
nism, relationship, structure, connotation, and behavior data), is
called a grey system. GST has a distinct advantage over the tech-
niques described before, i.e., it can enable the establishment of a

1094-6977/$26.00 © 2009 IEEE

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 6, 2009 at 03:36 from IEEE Xplore. Restrictions apply.

648 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 6, NOVEMBER 2009

prediction model using just a small amount of known data. In the
context of data starvation, GST is known to be effective and has
been widely applied to address real-world problems in the do-
mains of energy management [20], mobile communication [21],
instrument measurement [22], stock price analysis [23], and im-
age processing [24], [25]. In addition, Song ef al. [26] used
GST to address the whole-project effort prediction problem in
software engineering. They used grey relation analysis (GRA)
derived from GST to select more effective feature subsets and
similar projects to support a prediction process. Their results
showed that GRA can resolve the effort prediction problem
with high prediction accuracy. Encouraged by this successful
work, we now explore the stage-effort prediction problem using
GST in this research.

As we know, there are many project life-cycle models used
in the software development domain such as iterative cycles,
traditional waterfall models, and so forth. These, in turn, are
split into different phases, e.g., feasibility, high-level design,
etc. Each of these phases can have complex and, on occa-
sions, ill-defined mappings to physical time units (such as week,
month, and quarter). These time units have most generality and
are clearly very important in project scheduling. For this rea-
son, in this paper, we focus on software physical time unit,
which, for clarity, we refer to as stage-effort prediction. This
is in contrast to prediction based on phases, as shown by Mac-
Donell and Shepperd [12], that used a seven-phase classification
scheme.

We propose a method named GV (GM(1,1) and Verhulst).
GV takes full advantage of two grey models of GST—GM(1,1)
and Verhulst—to predict future stage effort in light of the law
derived from records of prior stage effort, and it can adapt to
particular development methodologies automatically by using a
novel grey feedback (GFB) mechanism. We validate the method
on a large-scale software engineering data repository and obtain
very promising results.

The remainder of this paper is organized as follows. In the
next section, we discuss related work on, and then present the
basic concepts and the prediction principles of the grey mod-
els, followed by the introduction of the proposed stage-effort
prediction method GV and an example. After that, we describe
the datasets and the experimental method we used. The results
are then described and discussed, with a concluding discussion
presented in the last section.

II. RELATED WORK

Surprisingly, the empirical study of software stage-effort pre-
diction during the development process has received limited
attention. The authors are aware of only four studies that have
investigated this issue empirically (one being a previous study
involving two of the authors [12]). Kulkarni ez al. [13] employed
a form of transformation matrix, referred to as a minimodel, to
predict effort for each life-cycle phase. By combining the set of
distinct-phase minimodels into a single overall model, it is pos-
sible to determine the output measures from the final phase using
input measures to the first phase. This method was applied to a
military project by Kulkarni et al., and while it appeared to be

potentially effective, prediction accuracy data was not presented.
Ohlsson and Wohlin [24] used artifact-based proxies of project
scope to augment existing within-project prediction and plan-
ning processes. They concluded that the approach has potential
in making plans, and deviations from those plans, which are
more visible, and that it can increase managers’ confidence that
predictions are of the right order. MacDonell and Shepperd [12]
predicted life-cycle phase effort for 16 software projects using a
simple LR method. They used prior-phase effort data to predict
the effort needed for subsequent phases in each of the projects.
The results showed that the method produced better predictions
than those provided by the project managers. A study reported by
Abrahamsson et al. [27] utilized regression and neural network
methods to generate iterative prediction and planning models
suitable for projects developed using agile methods. They con-
cluded that the approach improves prediction when compared
to whole-project efforts, and that such predictions are stable
and convergent, attributes that are essential in terms of effective
planning.

A variety of techniques, model inputs, and stage units
were used in the studies just described. Compared with these
studies, our method—GV—has the following differences or
characteristics.

1) GV iscapable of predicting project effort for physical time
stages. The other studies depend on the use of the life-
cycle phase [12], [13], [15] or the iterative development
cycle [27].

2) GV uses the inherent trend embedded in the prior stage
effort to predict. It does not need the historical data of out-
puts to build the model. The other studies focused on uti-
lizing the relationships between input and output measures
to build the models. MacDonell and Shepperd [12] exam-
ined the correlations between phases (e.g., between design
and implementation), Ohlsson and Wohlin [15] mapped
artifact-based proxies to effort, Abrahamsson et al. [27]
used LR and neural network methods to express the
relationships between inputs and outputs, and Kulkarni
et al. [13] also constructed a matrix-based model to reflect
relationships between inputs and outputs.

3) GV requires project effort itself only as input. MacDonell
and Shepperd [12] also used project effort as input.
Abrahamsson et al. [27] used several estimated predic-
tor variables and the effort of previous iterations as inputs.
Ohlsson and Wohlin [15] used their artifact-based prox-
ies as inputs, and Kulkarni et al. [13] used object mea-
sures (e.g., source lines of code, Ada packages, and data
flows).

In short, GV is anovel method to address the problem of stage-
effort prediction in software; in principle, however, it would
appear to have potential. We now provide an introduction to
grey models and to the GV approach.

III. GREY MODEL

GST uses grey models to make predictions. In this section,
we will introduce the basis concepts and two grey models used
in this paper, respectively.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 6, 2009 at 03:36 from IEEE Xplore. Restrictions apply.

WANG et al.: INTEGRATE THE GM(1,1) AND VERHULST MODELS TO PREDICT SOFTWARE STAGE EFFORT 649

A A

X ®)

GM(1,1) Verhulst

> k

v
B

Fig. 1. Curves of model GM(1,1) and Verhulst.

A. Basis

Generally, the nonnegative raw data sequence has no obvious
patterns in uncertain circumstances [19], and it is difficult to
find a proper curve to fit it, but after an accumulated generating
operation (AGO), the generated sequence will monotonically
increase and reflect a strong exponential character. We call this
the “accumulated generating grey exponential law.” Therefore,
we can find an optimum exponential curve to simulate it. The
AGO is defined as follows.

Let X9 be the original nonnegative sequence, the AGO
sequence X (1) can be generated as

k=1,2,...n (1)

For example, let X = (3,5,4,7), then X(1) = (3,8,
12,19). If the generating exponential character is not obvious,
further AGOs may be applied. For returning the data to the
original condition, the inverse AGO (IAGO) will be applied.
Therefore, AGO and IAGO are a pair of inverse sequence oper-
ators. The operation of TAGO is defined as follows:

x(0>(1) - x(l)(l)

tOk+1D) =2V k+1) -2 k), k=1,2,...n.

2

In GST, the curves used to fit AGO sequences can be rep-
resented by differential equations. We refer to these differen-
tial equations as grey models. There are many kinds of grey
models available according to the different kinds of AGO se-
quences, such as GM(1,1), Verhulst, DGM, etc. Among them,
the GM(1,1) is commonly used to simulate exponential-type se-
quences; therefore, it is suitable to describe any monotonic in-
creasing procedure. Verhulst is suggested to simulate sequences
with saturated trend. The typical curves of these two models [28]
are illustrated in Fig. 1, where k denotes the sequence element
index and z(*) (k) denotes the sequence element value.

B. GM(1,1) Model

A form of single variable and first-order linear dynamic dif-
ferential equation

dx)

T +aXM =p (3)

where X (1) is the AGO sequence of the original sequence, the
parameters a and b are called the development coefficient and
grey action quantity, respectively, which can be obtained from
the following expression:

a= [(ﬂ — (BTB)'B Yy @)
where
[—21(2) 1
1)
B z (3) 1 5)
| -2 (n) 1
[2(0)(2)
(0)
L2 (n)
and
(1) (1) (—
Ay =2 (k) + 2 (k —1) k=23.....n (1)

2 b
Then, the time response sequence of GM(1,1) can be written
as follows:

b b
(k4 1) = (f”((”(l) -) et k=12...n,
a

a

(®)
where & denotes the prediction of x. #(°) (k + 1) can be obtained
by IAGO as

POk +1)=2WEk+1)-2W%E), Ek=12...,n

C))

C. Verhulst Model

The Verhulst model is a form of single variable and second-
order differential equation

dx M
dt

where a and b can be obtained by

+aX® = p(x1)? (10)

Z — (B"B)'BTyy a1

&:

where

12)

(13)

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 6, 2009 at 03:36 from IEEE Xplore. Restrictions apply.

650 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 6, NOVEMBER 2009

1400
1200
1000 |
800 ‘
600 + Z74%
400 +

Effort (person hour)

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Stage (month)

Fig. 2. Curves of some software stage-effort sequences.

W (k) + 2 (k- 1)
5)
The time response sequence of Verhulst can be expressed as
follows:

2D (k) = k=23,...,n. (14)

az™M (0)
bz (0) + (a — bx(M)(0))erk’
k=1,2,...,n.

i (k+1) =

s)

Note that, in practice, the saturated sequence already has
some degree of exponential form, so the original sequence can
be regarded as X (1) directly, this means that we need not apply
AGO to X to obtain X*). And X in (13) should be the
TAGO sequence of the original sequence.

For the Verhulst model, the prediction values of the original
sequence can be obtained from (15).

IV. ANALYSIS OF SOFTWARE STAGE-EFFORT SEQUENCES

The characteristics of software stage-effort sequences' are in-
fluential in determining the use of appropriate prediction meth-
ods. In this section, we introduce some general characteristics
of software stage-effort sequences and demonstrate some pre-
liminary analysis of subsequences? and sequence sets.?

A. Overview

Software stage-effort sequences are records of the software
development process. Investigation of stage-effort sequence data
used in this study reveals that around 97% of all projects com-
prise fewer than 24 stages, where a stage represents one month.
Therefore, software stage-effort sequences are finite, and gener-
ally, quite short in length. In addition, in many cases, software
stage-effort sequences do not exhibit a regular shape over the
duration of the project, such as the bell-shaped curve or similar,
as we might imagine. In fact, they almost have no typical pat-
terns. Fig. 2 provides an illustrative depiction of this scenario,
using some of the software stage-effort data analyzed in this
study.

ISequence: a series of physical time stage-effort values of a software project.

2Subsequence: a subset of a software stage-effort sequence for building pre-
diction model.

3Sequence set: a collection of software stage-effort sequences.

1200
1000
800
600
400

Effort (person hour)

200 r

0 1 1 1 L 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Stage (month)

Fi

g.3. Stage-effort curves of two projects.

From Fig. 2, we note that at least some of the sequences
are very irregular; however, because all of the sequences are
plotted on this single graph, it is difficult to identify any con-
sistent patterns within or among them. For ease of observation
and comment, we pick out two curves at random from Fig. 2
and show them in Fig. 3. We find that the trend over the whole
sequence changes frequently. Within segments of the two se-
quences, however, the trend demonstrates a degree of stability.
In the absence of any consistent whole-sequence patterns, it may
be that subsequences can be used to reflect changes in stage ef-
fort and can form the basis for the building of accurate effort
prediction models.

B. Subsequences

Usually more recent data points are more important in predict-
ing the next data point, so we use recent stage-effort data points
to compose each model subsequence. How many stage-effort
observations should we use to build a prediction model? In the
early stages of the software development process, the number
of stage-effort values available is small. A grey model can es-
tablish a prediction model with small data samples, but usually
more data is helpful. On the other hand, a model that employs
many past observations is not always sensitive to data that are
liable to frequent and/or significant changes, or can incorporate
obsolete values in terms of their relevance to future predictions.
Based on these considerations, we use subsequences consisting
of the most recent three stage-effort data values.

We find that a subsequence with three elements can be clas-
sified into one of the four classes according to its trend and
shape. Fig. 4 portrays the four classes of subsequences with
characteristics abstracted.

Considering the sequence representations in Fig. 4 in relation
to the model types referred to in Fig. 1, we note that curves
1 and 2 are similar to the curves of Verhulst and GM(1,1),
respectively. It is also evident that curves 1 and 3, and curves 2
and 4 are symmetrical pairs. If we flip the class 3 or 4 curve in an
up/down direction, the curve adopts the form of curve 1 or 2, so
they can be dealt with as per curve 1 or 2. Therefore, we can use
GM(1,1) or Verhulst to build an appropriate prediction model
dynamically according to the types of subsequences identified.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 6, 2009 at 03:36 from IEEE Xplore. Restrictions apply.

WANG et al.: INTEGRATE THE GM(1,1) AND VERHULST MODELS TO PREDICT SOFTWARE STAGE EFFORT 651

1. Up raised
| it i

2. Up concave

3. Down concave 4. Down raised

Fig. 4. Four classes of stage-effort subsequences.
Historical Predictions
sets
—» Grey Model >
Grey
feedback
Live Optimised
subsequence predictions
—» Grey Model ——»
Fig. 5. GFB mechanism.

C. Sequence Set

It is more likely that a common law may be found from a se-
quence set than from a single sequence. Appropriately selected
and classified historical projects will be helpful in software effort
prediction [4], [10], [26]. Therefore, we group the projects used
in this study according to their development methodologies, and
hope to find typical patterns in each group. It is reasonable that
projects complying with same development process model will
have similar stage-effort sequence shape. Unfortunately, how-
ever, even within the same group, it may be difficult to find a
“standard” shape (as noted in [12]).

Although prior research has failed to find clear laws by obser-
vation [29], [30], these works have shown that by using GM(1,1)
or Verhulst grey models to make predictions using historical
project data grouped by development methodology (or industry,
etc.), the mean prediction biases for each group are significantly
different. These differences can be regarded as accumulate ef-
fects of the particular methodology applying on the predictions.
On the other hand, it indicates that the grey models do not differ-
entiate between the methodologies. Adopting a system view, we
can regard the stage-effort sequences as inputs, the grey models
as a process system, and the biases as outputs. We can then
use the mean biases as feedback to adjust the system to obtain
more optimal and consistent outputs. The feedback has relations
with the development methodologies but its components are not
completely clear, so we refer to it as “grey feedback™ or GFB.
Fig. 5 depicts the mechanism of GFB.

V. PROPOSED SOFTWARE STAGE-EFFORT PREDICTION
METHOD GV

A. General Method

In general, GV uses subsequences to build the grey models,
and uses sequence sets to obtain GFB. The grey models are
then used to make predictions, and GFB is acted on in terms
of prediction adjustment, leading to the production of an op-
timal prediction. Therefore, GV leverages both local (within
sequence) and global (sequence set) information to produce
predictions. Assume that a live project has a stage-effort se-
quence, {z(1),z(2),...,z(n)}, (n > 3), GV can use the most
recent three stage-effort values 2:(n — 2), z(n — 1), and 2(n) to
predict the effort of stage n + 1, i.e., (n + 1). The prediction
procedure of GV includes the following steps.

Step 1: Construct the model subsequence. Use the most re-
cent three stage-effort data values z(n — 2),z(n — 1),
and z(n) as model subsequence.

Smooth the subsequence. Use the modified moving
average of order 3 to eliminate unwanted fluctuations
of the subsequence (see Section V-B for details).
Determine the subsequence type according to the
trend (up/down) and shape (raised/concave) (see
Section V-C for details).

Establish a grey model dynamically according to the
subsequence type and produce a preliminary predic-
tion value &(n + 1) (see Section V-D for details).

In order to facilitate the following description, we represent
steps 1-4 as a function

Step 2:
Step 3:

Step 4:

1),z(n)), n>3.
(16)
where the input to the function is the subsequence and the output
is the prediction value of stage effort for the next stage n+1.
Step 5: Adjust the prediction result using the stage-effort ad-
justment coefficient (SAC) (see Section V-E for de-
tails), and then obtain the optimal prediction as

Z(n + 1) = Grey_Predict(z(n — 2), z(n —

Zopt(n 4 1) = &(n + 1)SAC. (17)

For ease of description, we denote the overall GV prediction
procedure (from steps 1-5) by a function
n > 3.

1), z(n)),
(18)

where Zop¢(n + 1) is the final effort prediction value of stage
n + 1. Fig. 6 portrays the details of the general prediction pro-
cedure of GV.

Zopt(n+1) = GV (z(n — 2),z(n —

B. Modified Moving Average of Order 3

Smooth transformation can reduce noise-based fluctuations
in the sequences. A common transformation method is the
weighted moving average of order k [31]

w1y +ways + -+ WYy ways +wiys + -0+ Wpr1Yk+1
Wy +wy A+ wg W2 + w3 + -t Wetl

wW3Ys + ways + -+ Wk2Yk+2
W3 twg + et Whyo

)

19)

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 6, 2009 at 03:36 from IEEE Xplore. Restrictions apply.

652 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 6, NOVEMBER 2009

The software stage-effort sequence
of a live project

Construct the subsequence using the
most recent three stage-effort values

v

Smooth the subsequence using modified

moving average of order 3 o . .
+ Historical projects which have the

same development methodology with
Determine the subsequence type the live project

by trend (up/down) and shape (raised/cancave) l

Using GM(1,1) or Verhulst to build prediction model Calculate SAC (Stage-effort

according to the subsequence type adjustment coefficient)
| Predict stage-effort |
Stage-effort [« SAC

| Optimum stage-effort prediciton |

Fig. 6. Prediction procedure of GV.

where Y = (y1,¥2,9s3,...) is a given sequence and w; is the
weight. After transformation, k—2 head and tail data are dis-
carded. This would likely raise problems in software stage-effort
prediction as, in general, the stage-effort data of a software
project are limited, particularly, in the early stages of devel-
opment. The aforementioned transformation makes small data
samples even smaller, perhaps of insufficient size to construct a
prediction model. Therefore, we modify (19) by reserving the
head and tail data. For example, the weighted moving average
of order 3 used in this paper can be treated as

3y1 + v Yk—1 + 2yk + Yk+1 Yn—1 + 3Yn
1 ey 1 ey 1 .
Specifically, for a sequence of three elements (y1, ¥2, ¥3), the
transformed sequence is

(20)

3y1 + 2 1+ 2y + s Y2 + 3ys

4 4 4

The three elements can form a folding line. The basic shape

of the folding line will not change after the transformation, and

a straight line will still be a straight line after the transformation.

Fig. 7 illustrates the original and transformed sequences where

the x-axis denotes the indexes of the elements and the y-axis

denotes the values. The circles represent the original data and
the squares represent the transformed values.

From Fig. 7, we can see that the transformed sequence is more

regular than the original but that the original trend is preserved.

2y

C. Determination of Subsequence Type

We assume that the subsequence is composed of (y1, Y2, y3).
The type determination procedure includes two stages. Fig. 8
shows in pseudocode the detailed determination procedure of
subsequence type.

First, classify the subsequence into up or down classes by
comparing y; with ys. If y3 > v, we say that the subsequence
has a total up trend, if y3 < y;, we say it has a total down trend,
if y3 = y; (horizontal), we regard it as a down trend (steps 1
and 8, respectively, in Fig. 8).

12

10 r 0

Value
[2]

1 2 3

Index

—@—original —l— transformed

Fig. 7. Modified moving average of order 3.
Procedure: Determine the stage-effort subsequence type
Input: subsequence, (v, y2, ¥'3)

Output: SEQUENCE_TYPE, subsequence type from 1 to 4
D ifys>y;
2) // up sequence
3) ify> > tys)2 // raised sequence
4) SEQUENCE TYPE=1;
5) else // concave sequence or straight line
6) SEQUENCE_TYPE =2;
7 end if
8) else
9) // down or horizontal sequence
10) if y2 <(y;ty3)/2 // concave sequence
11) SEQUENCE_TYPE =3;
12) else // raised sequence or straight line
13) SEQUENCE_TYPE =4,
14) end if
15) endif
Fig. 8. Determination of subsequence type procedure.

We then classify the subsequence into raised or concave
classes by comparing y» with the median of y; and ys, i.e.,
(y1 +y3)/2: 1) for an up class subsequence, if yo > (y; +
y3)/2, we say the subsequence is raised, type is 1 (steps 3
and 4), if y» < (y1 +y3)/2, we say it is concave, type is
2. When yy = (y1 +y3)/2, it is a straight line, we include
it in the concave class (steps 5 and 6) and 2) for a down
class subsequence (including y3 = y1),ifyo < (y1 + y3)/2, we
say the subsequence is concave, type is 3 (steps 10 and 11),
if yo > (y1 +y3)/2, we say it is raised, type is 4. When
y2 = (y1 + y3)/2, it is a straight line, we include it in the raised
class (steps 12 and 13).

D. Prediction Model

GV establishes models dynamically according to the types
of stage-effort subsequence. Considering the subsequence rep-
resentations in Fig. 4 in relation to the model types referred
to in Fig. 1, we note that curve 1 is up-raised, i.e., a saturated
sequence, so a Verhulst model can be used to represent it. Curve
2 is up-concave, i.e., an exponential sequence, and thus, is theo-
retically suitable to be predicted by GM(1,1). Curves 3 and 4 are
down sequences that cannot use GM(1,1) or Verhulst directly,

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 6, 2009 at 03:36 from IEEE Xplore. Restrictions apply.

WANG et al.: INTEGRATE THE GM(1,1) AND VERHULST MODELS TO PREDICT SOFTWARE STAGE EFFORT 653

Smoothed subsequence

Subsequence type

[GM(1,1)| | Verhulst| |GM(1,1)| | Verhulst

| Fip | [Fip |

| |
v

| Stage effort prediction

Fig. 9. Model and prediction procedure.
TABLE I
TYPES AND TREATMENTS OF STAGE-EFFORT SUBSEQUENCES
Type Class of original subsequence Suitable model
1 Saturated Verhulst
2 Exponential GM(L,1)
3 Saturated after up flipping Verhulst
4 Exponential after up flipping GM(1,1)

because GM(1,1) and Verhulst require the sequences to have a
total upward trend for accurate predictions. Therefore, we must
first convert these curves to up-style sequences. In fact, as noted,
itis clear that curves 1 and 3, and curves 2 and 4 are symmetrical
pairs. If we flip the class 3 or 4 curve in an up/down direction,
it adopts the form of curve 1 or 2. We can then use GM(1,1)
or Verhulst to model and predict the curves. After predicting,
we need to flip again to ensure that the models match the orig-
inal sequences. The detailed procedure is shown in Fig. 9. In
summary, the classes and suitable models for various types of
original data subsequences are listed in Table I.

E. Obtaining SAC and GFB

SAC forms a bridge between the grey models and particular
development methodologies. Using it, GV can fit the particular
stage-effort sequences better and obtain more accurate results. In
prior research [29], [30], a bias correction method has been used,
but it tends to overfit. In this study, we make improvements based
on the prior work, and propose a novel adjustment coefficient
SAC as follows:

¢GFB/N
~ 1_-GFB

where N is the length of a GV model subsequence; in this
study, it is equal to three. GFB is intended here as a form of
GFB pertaining to particular development methodologies (see
Section IV-C for details). It can be estimated using the mean
biases of predictions of historical stage-effort sequences.

SAC (22)

Function: GetGFB, obtain the GFB (grey feedback) from a set of software
stage-ceffort sequences.

Input: a set of stage-effort sequences.

Output: GFB

Dj=1

2) for each stage-effort sequence {x(1), x(2),...,x(n)}, (n = 3)

3) for each i from 3 to n-1

4) (i + 1) = Grey_Predict(x(i - 2), x(i = 1), x(i));
i+1)—-x(+1
5) Bias(j):w :
x(i+1)
6) J=itlL
7) end for
8) end for
1 &
9) GFB=——> Bias(k);
j _l k=1
Fig. 10. GFB obtaining function.

To obtain GFB, we need a set of historical projects that com-
ply with certain development methodologies. Each project has
a stage-effort sequence and is regarded as a live project. First,
we use (16) to make predictions stage by stage for each project,
then compute the bias of each prediction. This process iterates
until all projects are processed. Finally, we average all the biases
and assign the result to GFB. The procedure for obtaining GFB
is summarized in Fig. 10.

F. Example

We now demonstrate the complete prediction procedure for
a “live” project using the GV method. The initial condition is:
a live project that has been in progress for three stages (three
months), stage-effort values (in person-hours) of 260, 101, and
450, and SAC = 0.76. The prediction procedure of the effort
needed to complete the fourth stage (the fourth month) is as
follows.

Step 1: Construct the model subsequence using the three most

recent stage-effort values. The subsequence is X (V) =
(z(9)(1),2(9(2),2(9)(3)) = (260, 101, 450).
Smooth the subsequence. Use (21) to trans-
form the subsequence into: X(©) = (z(%) (1), 2(9)(2),
2(0(3)) = (220,228,363).
Determine the subsequence type. According to
Section V-C, because x(9)(1) < z(*)(3) and
20(2) < (29 (1) + 2(9(3)) /2, so X(©) is an up-
concave sequence, belongs to type 2, and according
to Table I, the suitable prediction model is GM(1,1).
Build the prediction model. According to the building
procedure of GM(1,1) (see Section III-B for details),
first apply AGO on X(°) and obtain the AGO se-
quence: X = (21 (1), 21 (2), 21 (3)) = (220,
448,811). Then, we can get Z(!), B, and Yy as

Step 2:

Step 3:

Step 4:

2 (2) + 21 (1)
200 _ [z<1>(2)] _ 2 _ [334]
=M (3) 4 21 (2) 629.5
2

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 6, 2009 at 03:36 from IEEE Xplore. Restrictions apply.

654 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 6, NOVEMBER 2009

Lot~ [

o[1)

the arguments @ and b can be obtained by (4)

—0.4569}

a
0= =(B"B)'BTyy =
¢ [b} (B B) N [75.4112

Therefore, we can get the prediction model of X (1)
by (8)

50 +1) = <x<o>(1) _ b) gk 0

= 385.0497¢"-4569% _ 165.0497.

Let k= 1,2, 3, we can get X(1) = (&(1)(2), (1) (3),
(1) (4)) = (443,795,1351). Note that (1) (4) cor-
responds to stage 4 (the stage for which we are
predicting).

Make the preliminary prediction. According to (9),
we can get the preliminary prediction of stage 4:
20 (4) = 2V (4) — 21)(3)) = 1351 — 795 = 556.
Apply SAC to the preliminary prediction to obtain
the optimum prediction. The final prediction value is:
556 x SAC = 556 x 0.76 = 422.

Therefore, the prediction effort for the fourth stage of this
project is 422 person-hours. After one further month, we ob-
tain the real-effort value of the fourth month, and then, the
fifth stage-effort value can be predicted by the known effort of
stages 2, 3, and 4. The procedure is executed like this until the
project completes overall. Note that SAC is obtained from his-
torical projects, but if no historical projects are available, then let
SAC = 1.

Step 5:

Step 6:

VI. EXPERIMENTS AND ANALYSIS
A. Data Sources

The data used in this research are drawn from a large-scale
software engineering data repository.* The data contain infor-
mation relating to around 1900 projects undertaken between
2000 and 2004. The projects come from around 30 countries or
areas. The main contributing countries are: the United States,
Australia, Sweden, Canada, New Zealand, and the United
Kingdom. The application domains range from aerospace, fi-
nancial, manufacturing, medicine, traffic, and business. The
project data in the repository are composed of project proper-
ties and effort data. The static properties, such as development
methodology, industry, development team, project type, expe-
rience levels, etc., are collected once at the beginning of each
project. The databases, platforms, computer-aided software en-
gineering (CASE) tools, etc., are recorded as changes in each
occur. Each project is described in terms of a set of concurrent
activities that comply with a certain methodology. The effort for

4We regret that the data set is subject to a non-disclosure agreement due to
its commercially sensitive nature.

TABLE I
DISTRIBUTION OF PROJECTS

Dataset Description Count
1 Combined Dev+ Life Cycle Modules 864
2 App Development Overlapping Waterfall 567
3 SSP-Software Engineering and Release 390
4 Application Implementation 45

TABLE III
DESCRIPTIVE STATISTICS OF PROJECT STAGE EFFORT (IN PERSON
HOURS PER MONTH)

Dataset Mean Std. Dev Min Max Median
1 729.17 1701.96 0 37765.50 331.25
2 941.03 3604.13 0 69233.00 312.50
3 437.74 737.15 0 7892.50 194.00
4 649.38 1378.09 0 19845.00 260.00

each live development activity is recorded monthly. To obtain a
general view, we employ the monthly effort of a project (instead
of its composite low-level activities) as the figure of interest in
each stage in the experiments of this study. The former is the
sum of the latter for each month.

As stated previously, GV can adjust itself to suit particu-
lar development methodologies, so we organized the projects
into four datasets drawn from the underlying dataset according
to development methodology. Tables II and III summarize the
real raw data stored in the repository and show that the num-
ber of projects per methodology ranges from 45 to 864, the
monthly effort ranges from 0 to 69 233 person hours. Therefore,
the datasets are large (by software engineering standards) and
methodologically diverse. It has long been acknowledged that
the absence of systematic historical data is a significant obstacle
in the software effort prediction domain [17], [32], with experi-
ments and evaluations having to rely on small data samples [6].
The datasets used in this study enable us to evaluate and cal-
ibrate the proposed method with data from large numbers and
various kinds of projects, and should, therefore, lead to more
robust results and reliable conclusions.

B. Experimental Methods

1) General Method: The purpose of the experiments is to
evaluate the prediction performance of GV. First, we preprocess
the four datasets (see Section VI-B2 for details), then for each
of the four datasets, we systematically extract five pairs of the
training and test datasets, and obtain a total of 20-pair training—
test datasets. We obtain GFB and SAC on each training set,
and evaluate GV on the test set (see subsection Section VI-B3
for details). Finally, we use a LR method and the Kalman filter
(KF) method (see Section VI-B4 for details) as benchmarks to
compare against the performance of GV.

2) Data Preprocessing: Inspection of the datasets reveals
that there is a lot of noisy and inconsistent data. We preprocess
the data as follows.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 6, 2009 at 03:36 from IEEE Xplore. Restrictions apply.

WANG et al.: INTEGRATE THE GM(1,1) AND VERHULST MODELS TO PREDICT SOFTWARE STAGE EFFORT 655

Delete the extreme’ cost data values from the stage-effort
sequences. These values are too small or too big when compared
with the other effort values. The stages with such extreme values
are abnormal stages and could not be predicted using a generally
useful model. For instance, the minimum value of stage effort
is zero, and this is considered an extreme value (see Table III).

3) Validation Method: Cross-validation is a method for esti-
mating generalization error based on “resampling” [33]. We use
a five-fold cross-validation strategy as the validation approach.
In five-fold cross-validation, the dataset & is randomly par-
titioned into five mutually exclusive subsets, 2, %, ..., s,
each of approximately equal size. The inducer is trained and
tested five times. Each time ¢ € {1,2,...,5}, the subset &, is
reserved as the test set, and the remaining subsets Z © 2,9 are
used as training set.

We obtain SAC from the training set (see Section V-E for
details) and evaluate GV on the test set. When evaluating,
we regard the projects in the test set as live projects, i.e., for
each project with stage-effort sequence {z (1), xz(2),...,z(n)},
(n>3), we use {z(k —2),x(k—1),z(k)}, where 3 <k <
n — 1, as the input subsequence, and use (18) to obtain the pre-
diction value &,y (n + 1). For a project with n stages, we can
make n—3 predictions. For each prediction, we compare the pre-
diction value with the actual value to obtain evaluation results.
In this study, we use the bias, mean magnitude of relative error
(MMRE), and median MRE (MdMRE) as evaluation measures.

The Bias establishes whether models are biased and tend to
over or under prediction. The Bias is defined as follows:

& — &

Bias; = 23)

€
where € is the prediction value of actual effort €.
The magnitude of relative error (MRE) is another common
criterion for evaluating software effort prediction methods. For
a prediction i, the corresponding MRE,; is defined as follows:

MRE; = |Bias;| . 24)

By averaging MRE; over multiple predictions n, MMRE is
obtained as
1 n
MMRE = — > MRE;. (25)

i1=1

MMRE is the most frequently used criterion for evaluating
software effort prediction methods. However, it is known to be
sensitive to individual predictions with excessively large MREs.
We, therefore, also use MAMRE for the n predictions, which is
less sensitive to extreme values as another measure. For both
MMRE and MdMRE, a higher value means lower prediction
accuracy.

4) Benchmark Methods: MacDonell and Shepperd em-
ployed a simple LR method in [12], and because there is no
other work that can be compared, we use LR as a benchmark.

3If a value is very large or small compared with its adjacent values in the
sequence, then we call it an extreme.
%The notation 2 & %, means set 2 minus set 7, .

TABLE IV
MMRE OF GV, LR, AND KF, AND GV’s IMPROVEMENT UPON KF AND LR
‘WITH DIFFERENT DATASETS

Datse MMRE (%) improvement (%)
GV KF LR upon KF | upon LR
1 62.60 80.35 111.29 28.35 77.78
2 61.44 84.98 131.18 38.31 113.51
3 61.52 95.69 134.64 55.54 118.86
4 54.48 77.95 81.63 43.08 49.83
TABLE V

MDMRE OF GV, LR, AND KF, AND GV’s IMPROVEMENT UPON KF AND LR
‘WITH DIFFERENT DATASETS

batase MAMRE (% improvement (49
GV KF LR upon KF | upon LR
1 46.96 59.02 73.87 25.68 57.30
2 44.17 53.89 74.59 22.01 68.87
3 49.81 67.59 85.43 35.70 71.51
4 42.04 57.01 64.31 35.61 52.97

However, as LR often suffers from a leverage effect of out-
liers [17], we complement it with a further approach. The KF
method [34] is a well-known series prediction method that can
deal with noise and outliers robustly [35], so we also use the KF
as another benchmark method and determine its arguments from
the sequences in the training set (the training and test sets KF
used are same as those used with GV, see Section VI-B3 for de-
tails). For fairness, we use the same datasets and subsequences
for the three approaches.

As many statistical techniques that deal with the prediction of
time series data require large samples (i.e., long sequences), so
they are not suitable to be benchmarks here. For example, effec-
tive fitting of Box—Jenkins models (often called autoregressive
integrated moving average (ARIMA) models) [36] typically re-
quires at least 50 observations [37]. This is too many for most
software project stage-effort sequences and cannot be satisfied
here.

C. Experimental Results

We conduct the experiments using GV (the GV method), KF
(the KF method), and LR (the simple LR method) on the four
datasets. Tables IV-VI report the accuracy of the respective
methods in terms of MMRE, MdMRE, Bias, and the improve-
ments of GV upon KF and LR.

From Tables IV-VI, we observe that the MMREs, MdMRE:s,
and Biases of GV are superior to those of KF and LR for all four
datasets. Further, GV’s prediction accuracies across all datasets
exhibit smaller differences. This indicates that GV has better
consistency and stability on different development methodolo-
gies. The small bias values also imply that GV can cope with
the differences in development methodologies to obtain opti-
mal results. We also observe that compared with KF and LR,
GV’s MMRE:s are lower by at least 28% and 50%, respectively,

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 6, 2009 at 03:36 from IEEE Xplore. Restrictions apply.

656 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 6, NOVEMBER 2009

TABLE VI
Bi1As OF GV, LR, AND KF, AND GV’s IMPROVEMENT UPON KF AND LR WITH
DIFFERENT DATASETS

. GV's Bias improvement
Dataset . (%)p

GV KF LR upon KF | upon LR

1 -0.76 -25.73 -29.04 3285.53 3721.05

2 0.18 -35.83 -34.49 | 19805.56 | 19061.11

3 322 -40.42 -50.31 1155.28 1462.42

4 5.85 -19.73 -20.98 237.26 258.63

TABLE VII

PERCENTILES OF ABSOLUTE RESIDUALS OF PREDICTION ACCURACY FOR GV,
KF, AND LR WITH ALL DATASETS

dataset | Method Percentiles
5 10 | 25 50 75 90 95
1 GV 9.4 20.7] 57.7] 159.1] 363.8] 764.8] 1160.2
KF 13.0] 245 64.7] 168.7| 409.5 858.4| 1302.9
LR 12.8] 279 75.4| 1824 404.1] 8042 11823
GV 82| 18.6| 52.7| 153.2| 375.6| 788.8| 1462.0
2 KF 12.0] 244 69.4 1789 413.3] 877.8] 1465.8
LR 12.8] 282 74.00 1869 417.4] 8403 14804
GV 42| 104] 34.6] 944 2287 5193 801.0
3 KF 6.7 179 45.6] 121.7| 286.2| 607.5 934.3
LR 7.1] 163 47.8] 128.6] 292.8] 584.0f 901.9
GV 5.3 11.0] 34.7] 100.4| 270.0 540.6 688.0
4 KF 8.5 143 374 104.8] 315.6] 588.0 861.6
LR 5.6] 125/ 40.5 1065 265.6] 5999 914.0

MdMRE:s are lower by at least 22% and 53%, respectively, and
GV shows very good performance with respect to Bias, with
values that are lower by at least 237% and 259% than KF and
LR, respectively.

In statistics, percentiles are used to describe characteristics
of distributions. Here, we used percentiles to explore the distri-
bution of the absolute residuals of prediction accuracy for the
three methods with four datasets. Table VII contains the results.
From it, we can find that GV has less values than KF and LR for
the Sth, 10th, 25th, 50th, 75th, 90th, and 95th percentiles with
all four datasets except for the 75th percentile of dataset 4, LR
has a less value. This reveals that GV outperformed both KF
and LR.

Although we have made some observations based on the data
presented in the tables before, to rigorously compare the differ-
ences between prediction accuracy between the three methods,
we need to perform statistical significance testing. The MMREs
of the three methods do not follow a normal distribution, so
we use one-tailed Wilcoxon matched-pairs signed ranks tests to
examine if there exist significant improvements on the MMREs
of GV over the other two methods. Table VIII gives the testing
results.

TABLE VIII
ONE-TAILED WILCOXON MATCHED-PAIRS SIGNED RANKS TEST OF MMRES OF
GV VERSUS KF AND GV VERSUS LR ON ALL DATASETS

p-value
Dataset
GV vs KF GVvsLR
1 .000 .000
2 .000 .000
3 .000 .000
4 .000 .000

From Table VIII, we observe that all p-values are less than
0.001. This means that the MMREs of GV are significantly
lower (and, therefore, better) than those of KF and LR.

To summarize, in this study, GV outperforms KF and LR on
all four datasets and demonstrates considerable potential. The
reasons lie in the following.

1) The AGO procedures of grey models make the original

stage-effort sequences more regular, and thus, easier to fit.

2) The subsequence type recognition procedures makes GV
flexible, which means GV can capture the various chang-
ing trends and further take full advantage of two grey
models.

3) The capability of using GFB from historical projects
means GV can utilize global domain knowledge to pilot lo-
cal predictions along correct directions, avoiding reliance
on just small local datasets and maximizing the capability
of the method.

VII. CONCLUSION

Dynamic software project stage-effort prediction facilitates
the evaluation of potential effort problems, and could provide
early warning information, thus ensuring that projects are com-
pleted within (possibly adjusted) schedules and budgets. In this
paper, we have proposed a novel approach of using grey mod-
els of grey system theory to address the software stage-effort
prediction problem during the development process. The pro-
posed method can predict the future stage effort using the effort
of three most recent continuous stages and can suit particular
development methodologies by using a novel GFB mechanism.

Our experiments have been conducted on a large-scale soft-
ware engineering data repository split into four datasets based
on development methodology. Because there is no other work
that can be compared, we employed the KF method and the LR
method as benchmarks. The results show that the proposed GV
method outperforms KF and LR in terms of MMRE, MdMRE,
and Bias for all datasets used.

Finally, we pose the question of generalization. The datasets
are drawn from a repository of medium to large projects from
an international software house. They cover a range of applica-
tion areas such as commerce, government information systems,
defense, and retail. Of course, different organizations may run
projects and collect data in different ways. Therefore, it would
be interesting to see replication of this study in different envi-
ronments. Nevertheless, this is an encouraging result and shows
that the method has considerable potential.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 6, 2009 at 03:36 from IEEE Xplore. Restrictions apply.

WANG et al.: INTEGRATE THE GM(1,1) AND VERHULST MODELS TO PREDICT SOFTWARE STAGE EFFORT

[1]

[3]
[4]

[5]

[6]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

M. Jgrgensen and M. Shepperd, “A systematic review of software devel-
opment cost estimation studies,” IEEE Trans. Softw. Eng., vol. 33, no. 1,
pp. 33-53, Jan. 2007.

M. Shepperd, “Software project economics: A roadmap,” in Proc. Future
Softw. Eng. (FOSE 2007), Minneapolis, MN, 2009, pp. 304-315.

B. W. Boehm, Software Engineering Economics. —Englewood Cliffs, NJ:
Prentice-Hall, 1981.

M. Shepperd and C. Schofield, “Estimating software project effort using
analogies,” IEEE Trans. Softw. Eng., vol. 23, no. 11, pp. 736-743, Nov.
1997.

K. Molgkken and M. Jgrgensen, “A review of surveys on software effort
estimation,” in Proc. 2003 Int. Symp. Empirical Softw. Eng. (ISESE 2003),
Rome, Italy, pp. 223-230.

L. C. Briand, T. Langley, and I. Wieczorek, “A replicated assessment
and comparison of common software cost modeling techniques,” in Proc.
22th Int. Conf. Softw. Eng. (ICSE 2000), Limerick, Ireland, pp. 377—
386.

L. C. Briand, K. E. Emam, D. Surmann, I. Wieczorek, and K. D. Maxwell,
“An assessment and comparison of common software cost estimation
modeling techniques,” in Proc. 21st Int. Conf. Softw. Eng. (ICSE 1999),
Los Angeles, CA, pp. 313-323.

M. Jgrgensen, “How much does a vacation cost? Or what is a software
cost estimate?” ACM SIGSOFT Softw. Eng. Notes, vol. 28, no. 6, p. 5,
Nov. 2003.

A.Idri, T. M. Khoshgoftaar, and A. Abran, “Can neural networks be easily
interpreted in software cost estimation?,” in Proc. IEEE Int. Conf. Fuzzy
Syst. (FUZZ-IEEE 2002), Hawaii, USA, pp. 1162-1167.

B. W. Boehm, B. K. Clark, E. Horowitz, A. W. Brown, D. J. Reifer,
S. Chulani, R. Madachy, and B. Steece, Software Cost Estimation with
Cocomo II. New York: Prentice-Hall, 2000.

G. R. Finnie and G. E. Wittig, “Al tools for software development effort
estimation,” in Proc. Int. Conf. Softw. Eng.: Edu. Practice (SE:EP 1996),
Dunedin, New Zealand, pp. 346-353.

S. MacDonell and M. Shepperd, “Using prior-phase effort records for re-
estimation during software projects,” in Proc. 9th IEEE Int. Softw. Metrics
Symp. (METRICS 2003), Sydney, Australia, pp. 73-86.

A. Kulkarni, J. B. Greenspan, D. A. Kriegman, J. J. Logan, and T. D. Roth,
“A generic technique for developing a software sizing and effort estimation
model,” in Proc. 12th Int. Comput. Softw. Appl. Conf. (COMPSAC 1988),
Chicago, USA, pp. 151-161.

N. E. Fenton and S. L. Pfleeger, Software Metrics, A Rigorous and Prac-
tical Approach, 2nd ed. Boston, MA: PWS-Kent, 1997.

M. C. Ohlsson and C. Wohlin, “An empirical study of effort estimation
during project execution,” in Proc. 6th Int. IEEE Softw. Metrics Symp.
(METRICS 1999), Boca Raton, USA, pp. 91-98.

A. Rainer and M. Shepperd, “Re-planning for a successful project sched-
ule,” in Proc. 6th IEEE Int. Softw. Metrics Symp. (METRICS 1999), Boca
Raton, USA, pp. 72-81.

G. Liebchen, B. Twala, M. Shepperd, M. Cartwright, and M. Stephens,
“Filtering, robust filtering, polishing: Techniques for addressing quality
in software data,” in Proc. Ist Int. Symp. Empirical Softw. Eng. Meas.
(ESEM 2007), Madrid, Spain, pp. 99-106.

M. Jgrgensen and S. Grimstad, “Avoiding irrelevant and misleading infor-
mation when estimating development effort,” IEEE Softw., vol. 25, no. 3,
pp. 78-83, May/Jun. 2008.

J. Deng, “Control problems of grey systems,” Syst. Control Lett., vol. 1,
no. 5, pp. 288-294, 1982.

T.H. M. El-Fouly, E. F. El-Saadany, and M. M. A. Salama, “Grey predictor
for wind energy conversion systems output power prediction,” IEEE
Trans. Power Syst., vol. 21, no. 3, pp. 1450-1452, Aug. 2006.

S. L. Su, Y. C. Su, and J. F. Huang, “Grey-based power control for
DS-CDMA cellular mobile systems,” IEEE Trans. Veh. Technol., vol. 49,
no. 6, pp. 2081-2088, Nov. 2000.

K. Lin and B. Liu, “A gray system modeling approach to the prediction
of calibration intervals,” IEEE Trans. Instrum. Meas., vol. 54, no. 1,
pp. 297-304, Feb. 2005.

Y. F. Wang, “On-demand forecasting of stock prices using a real-time
predictor,” IEEE Trans. Knowl. Data Eng., vol. 15, no. 4, pp. 1033-1037,
Jul./Aug. 2003.

R. C. Luo, T. M. Chen, and K. L. Su, “Target tracking using a hi-
erarchical grey-fuzzy motion decision-making method,” [EEE Trans.
Syst., Man, Cybern. A: Syst., Humans, vol. 31, no. 3, pp. 179-186, May
2001.

[25]

[26]

[27]

(28]

[29]

(30]

[31]
[32]
[33]
(34]

[35]

[36]

[37]

657

C. Jau-Ling and C. Pei-Yin, “An efficient gray search algorithm for the
estimation of motion vectors,” IEEE Trans. Syst., Man, Cybern. C, Appl.
Rev., vol. 31, no. 2, pp. 242-248, May 2001.

Q. Song, M. Shepperd, and C. Mair, “Using grey relational analysis to
predict software effort with small data sets,” in Proc. 11th IEEE Int. Softw.
Metrics Symp. (METRICS 2005), Rome, Italy, p. 35.

P. Abrahamsson, R. Moser, W. Pedrycz, A. Sillitti, and G. Succi, “Effort
prediction in iterative software development processes—Incremental ver-
sus global prediction models,” in Proc. Ist Int. Symp. Empirical Softw.
Eng. Meas. (ESEM 2007), Madrid, Spain, pp. 344-353.

S. Liu, Y. Dang, and Z. Fang, The Grey System Theory and Applications
(in Chinese). Beijing, China: Science Press, 2004.

Y. Wang, Q. Song, and J. Shen, “Grey learning based software stage-effort
estimation,” in Proc. 6th Int. Conf. Mach. Learning Cybern. (ICMLC
2007), Hong Kong, China, pp. 1470-1475.

Y. Wang, Q. Song, and J. Shen, “Grey prediction based software stage-
effort estimation,” Wuhan Univ. J. Nat. Sci., vol. 12, no. 5, pp. 927-931,
2007.

J. W. Han and M. Kamber, Data Mining: Concepts and Techniques.
Fransisco, CA: Morgan Kaufmann, 2001.

M. Shepperd and M. Cartwright, “Predicting with sparse data,” [EEE
Trans. Softw. Eng., vol. 27, no. 11, pp. 987-998, Nov. 2001.

J. Shao and D. Tu, The Jackknife and Bootstrap. ~New York: Springer-
Verlag, 1995.

R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Trans. ASME J. Basic Eng., vol. 82, no. 1, pp. 3545, 1960.

H. Weiming, T. Tieniu, W. Liang, and S. Maybank, “A survey on visual
surveillance of object motion and behaviors,” IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 34, no. 3, pp. 334-352, Aug. 2004.

P. Brockwell and R. Davis, Introduction to Time Series and Forecasting,
2nd ed. New York: Springer-Verlag, 2002.

C. Chatfield, The Analysis of Time Series, 5Sth ed. New York: Chapman
& Hall, 1996.

San

Yong Wang received the M.S. degree in computer
science in 2003 from Xi’an Jiaotong University,
Xi’an, China, where he is currently working toward
the Ph.D. degree in computer science.

He was with a Research Institute in Qingdao,
China, and has more than ten years of experience
in software development and project management.
His current research interests include software cost
estimation, software project management, and soft-
ware engineering data quality.

Qinbao Song received the Ph.D. degree in computer
science from Xi’an Jiaotong University, Xi’an, China,
in 2001.

He is currently a Professor of software technology
in the Department of Computer Science and Technol-
ogy, Xi’an Jiaotong University, where he is also the
Deputy Director of the Department of Computer Sci-
ence and Technology. He is also with the State Key
Laboratory of Software Engineering, Wuhan Univer-
sity, Wuhan, China. He has authored or coauthored
more than 70 referred papers in the area of machine

learning and software engineering. He is a board member of the Open Software
Engineering Journal. His current research interests include machine learning,
empirical software engineering, and trustworthy software.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 6, 2009 at 03:36 from IEEE Xplore. Restrictions apply.

658

datasets.

Stephen MacDonell received the Ph.D. degree in
software engineering from the University of Cam-
bridge, Cambridge, U.K., in 1993.

He is currently a Professor of software engineer-
ing and the Director of the Software Engineering Re-
search Laboratory (SERL) at Auckland University of
Technology (AUT), Auckland, New Zealand. He is
currently engaged in research in software metrics and
measurement, project planning, estimation and man-
agement, software forensics, and the application of
empirical analysis methods to software engineering

Prof. MacDonell is a member of the IEEE Computer Society, the Association
for Computing Machinery (ACM), and the Editorial Board of Information and

Software Technology.

Martin Shepperd received the Ph.D. degree in
computer science from the Open University Milton
Keynes, U.K., in 1991.

For anumber of years, he was with a bank as a Soft-
ware Developer. He is currently a Professor of soft-
ware technology at Brunel University, London, U.K.,
where he is also the Director of the Brunel Software
Engineering Research Centre (B-SERC). He has au-
thored or coauthored more than 100 refereed papers
and three books in the areas of software engineering
and machine learning. From 1992 to 2007, he was the

Editor-in-Chief of the Journal of Information and Software Technology. He is
currently an Associate Editor of the Journal of Empirical Software Engineer-

ing

Prof. Shepperd was an Associate Editor of the IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING (2000-2004).

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 6, NOVEMBER 2009

Junyi Shen graduated from the Department of Ap-
plied Mathematics, Xi’an Jiaotong University, Xi’an,
China, in 1962.

He is a Professor of software technology in the
Department of Computer Science and Technology,
Xi’an Jiaotong University. He has authored or coau-
thored more than 100 refereed papers and three books
in the areas of database, data mining, and software
engineering.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on December 6, 2009 at 03:36 from |IEEE Xplore. Restrictions apply.

